Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(5)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38473960

ABSTRACT

White adipose tissue (WAT) regulates energy balance through energy storage, adipokines secretion and the thermogenesis process. Beige adipocytes are responsible for WAT thermogenesis. They are generated by adipogenesis or transdifferentiation during cold or ß3-adrenergic agonist stimulus through a process called browning. Browning has gained significant interest for to its preventive effect on obesity. Glucocorticoids (GCs) have several functions in WAT biology; however, their role in beige adipocyte generation and WAT browning is not fully understood. The aim of our study was to determine the effect of dexamethasone (DXM) on WAT thermogenesis. For this purpose, rats were treated with DXM at room temperature (RT) or cold conditions to determine different thermogenic markers. Furthermore, the effects of DXM on the adipogenic potential of beige precursors and on mature beige adipocytes were evaluated in vitro. Our results showed that DXM decreased UCP-1 mRNA and protein levels, mainly after cold exposure. In vitro studies showed that DXM decreased the expression of a beige precursor marker (Ebf2), affecting their ability to differentiate into beige adipocytes, and inhibited the thermogenic response of mature beige adipocytes (Ucp-1, Dio2 and Pgc1α gene expressions and mitochondrial respiration). Overall, our data strongly suggest that DXM can inhibit the thermogenic program of both retroperitoneal and inguinal WAT depots, an effect that could be exerted, at least partially, by inhibiting de novo cell generation and the thermogenic response in beige adipocytes.


Subject(s)
Adipose Tissue, Brown , Adipose Tissue, White , Rats , Animals , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Obesity/metabolism , Adipogenesis , Dexamethasone/pharmacology , Thermogenesis
2.
Mol Cell Endocrinol ; 543: 111542, 2022 03 01.
Article in English | MEDLINE | ID: mdl-34995681

ABSTRACT

White adipose tissue (WAT) browning has gained interest due to its impact in obesity. Here, we evaluated the effect of androgens on the Ucp1-dependent thermogenic process from inguinal (IAT) and retroperitoneal (RPAT) WAT. Surgically androgens depleted rats (ODX) showed basal thermogenic activation (room temperature) in both WAT depots, which expressed higher levels of Ucp1, Prdm16 and Pgc1a. WAT pads from ODX cold-exposed rats (ODX-C) expressed increased levels of Ucp1 and Pgc1a and showed high UCP1 protein content. In primary beige adipocyte cultures, testosterone decreased the mitochondrial marker Cox8b and mitochondrial content. Finally, testosterone and dihydrotestosterone (DHT) decreased the expression of Ucp1, Pcg1a and Prdm16 in forskolin-stimulated beige adipocytes, an effect that was prevented by the antiandrogen flutamide. In conclusion, androgen deficient rats developed WAT depots with enhanced basal and cold-stimulated thermogenic activity. Additionally, in vitro androgen treatments inhibited the thermogenic program, effect which was mediated by the androgen receptor pathway.


Subject(s)
Adipocytes, Beige , Androgens , Adipocytes, Beige/metabolism , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Androgens/metabolism , Androgens/pharmacology , Animals , Cold Temperature , Rats , Thermogenesis/physiology , Uncoupling Protein 1/genetics , Uncoupling Protein 1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...